Weak length induction and slow growing depth boolean circuits

نویسنده

  • Satoru Kuroda
چکیده

We de ne a hierarchy of circuit complexity classes LD , whose depth are the inverse of a function in Ackermann hierarchy. Then we introduce extremely weak versions of length induction called LIND and construct a bounded arithmetic theory L2 whose provably total functions exactly corresponds to functions computable by LD circuits. Finally, we prove a non-conservation result between L2 and a weaker theory ACCA which corresponds to AC. Our proof utilizes KPT witnessing theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Patterns Can Be Hard: Circuit Lower Bounds for the Pattern Matching Problem

Detecting patterns in strings and images is a fundamental and widely studied problem. Motivated by the proliferation of specialized circuits in pattern recognition tasks, we study the circuit complexity of pattern matching under two popular choices of gates: De Morgan and threshold gates. For strings of length n and patterns of length log n k ≤ n− o(n), we prove super polynomial lower bounds fo...

متن کامل

On Constant-Depth Canonical Boolean Circuits for Computing Multilinear Functions

We consider new complexity measures for the model of multilinear circuits with general multilinear gates introduced by Goldreich and Wigderson (ECCC, 2013). These complexity measures are related to the size of canonical constant-depth Boolean circuits, which extend the definition of canonical depth-three Boolean circuits. We obtain matching lower and upper bound on the size of canonical constan...

متن کامل

On the Computational Power of Sigmoid versus Boolean Threshold Circuits

We examine the power of constant depth circuits with sigmoid (i.e. smooth) threshold gates for computing boolean functions. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size boolean threshold circuits (i.e. circuits with boolean threshold gates). On the other hand it turns out that, for any constant depth d , polynomial size sigmoid...

متن کامل

The Size and Depth of Layered Boolean Circuits

We consider the relationship between size and depth for layered Boolean circuits and synchronous circuits. We show that every layered Boolean circuit of size s can be simulated by a layered Boolean circuit of depth O( √ s log s). For synchronous circuits of size s, we obtain simulations of depth O( √ s). The best known result so far was by Paterson and Valiant [17], and Dymond and Tompa [6], wh...

متن کامل

Polynomial Threshold Functions and Boolean Threshold Circuits

We study the complexity of computing Boolean functions on general Boolean domains by polynomial threshold functions (PTFs). A typical example of a general Boolean domain is {1, 2}. We are mainly interested in the length (the number of monomials) of PTFs, with their degree and weight being of secondary interest. We show that PTFs on general Boolean domains are tightly connected to depth two thre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.LO/9907022  شماره 

صفحات  -

تاریخ انتشار 1999